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Central Fuel Jet, 83.6mm

“  Numerical simulation of a swirling diffusion flame is

il | EPE———— performed using open source computational fluid dynamics

I (CFD) software OpenFOAM.

= This case is well documented and experimental data is
available online (Masri et. al. 2004).

= (Good case for validation since it covers both combustion and
complex turbulence in the swirling flow.

Bluff-Body Face, g50mm

of turbulent combustion.

» And also to verify that OpenFOAM can provide reliable results
bt g for combustion simulations.

Flow Straightener

J\ /] " ot nclned © The objective of this study is to gain a better understanding
|

< This presentation is a continuation of the work done in a
M.Sc. Thesis (Paladin 2012) that was completed for
GDTech Engineering (Belgium).

Main Axial Air Inlets

1/2" Fuel Delivery
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Cross-section of hexahedral grid

Fuel is methane.
Large-eddy simulations (LES) using WALE model.

Unsteady RANS (URANS) using k-e model.
< Uniform velocity conditions used at inlets.

& §
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I f 4 T Co-flow air inlet

Burner surface Fuel inlet U=20 m/s
T=2813k U=66.3 m/s Re=21200
Re=15400 Swirl air inlet
U=16.3 m/s
— Ut=25.9 m/s
Re=32400 Grid at inlet
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Limitations of using OpenFOAM for Combustion

OpenFOAM combustion has a majority of the functionality found in commercial
codes.

However, the current release of OpenFOAM does not steady state solver for
combustion.

UAt
For transient simulation CFL number < 1. CFL = Ax

This means that combustion simulations with OpenFOAM will typically be
longer, i.e. 10000s of timestep to develop the flow.

OpenFOAM can also run transient simulations with large timesteps (CFL>>1).
= Stable large timestep simulations can be run without specifying the timestep.
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& Single step irreversible reaction mechanism.
CHy+205 — CO5 + 2H50

< GRI mechanism consists of 53 species and 325 reversible reactions.
= |ncludes details on NOX.

< Bilger's mechanism consists of 15 irreversible and 10 reactions.
= Does not calculate NOX.

< A model is required to represent the turbulent-chemistry interactions at the
micro-scale.

= Two common combustion models are tested here: the Eddy Dissipation Concept
(EDC) and the Partially Stirred Reaction (PaSR) model.
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S LES compares well with experimental

data.

S RANS also compares well when a high

turbulent intensity is imposed at the inlet.
Low turbulence at the inlet increases the

U/U.
o
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length of the laminar region.

inlet condition

ttt

exp
1% k-¢ —
5% k-e —

WALE
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inlet shape

O

From CFD Canada conference 2018, Lozowy et. al.

Experimental data provided by Dr Tachie
at University of Manitoba

snapshot of instantaneous velocity from LES
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C’/) Literature review of isothermal low-Reynolds number jets
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From CFD Canada conference 2018, Lozowy et. al.
& LES Captu res the laminar-to-turbulent Experimental data provided by Dr Tachie
transition at the inlet. at University of Manitoba
= Even though no turbulence is imposed at
the inlet TKE from RANS k-£ model TKE from LES WALE model
' (5% inlet turbulence) (laminar inlet)

© RANS does not capture the transition.
=  However TKE profile is comparable.

exp ©

1% k-¢ —

5% k-e —

10% k-¢ —
WALE

inlet condition

k/U2 (x102)
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= Getting good results with RANS is still

dependent on using a high-quality grid.

Centreline velocity from grid independence
study using tetrahedral cells only.

exp ©
very coarse —
CORIGE " =

0.8 } o medium ——

0 6 12 18 24 30
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From CFD Canada conference 2018, Lozowy et. al.

A thick layer of prism
cells fixes this issue.
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velocity field turbulent flame (single step reaction)
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Instantaneous LES results

AP DYNAMICS

engineering

Side view Top view
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C’/7 Velocity profiles from 3-D isothermal case
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S Qverall both LES and URANS provide a reasonable
prediction of the velocity prior to the ignition of the flame.

x=0.02 m x=0.04 m
40
a5
30
25

20

LES £ 15 LES

3D RANS

3D RANS 10

==@==experimental 5 = © - experimental

“ The RANS does not capture the decay in the centreline velocity.

= But that was also expected considering the limitations of RANS.

< When the flame is ignited, this affects the velocity profile by
increasing the length of the jet.
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Instantaneous LES velocity

Time-averaged LES velocity
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C/" D URANS temperature contours
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x=0.03 m

< The single step reaction mechanism does
not fully capture the shape of the flame. i

= Temperature is over predicted, relative to
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Combustion products

& (02 is reasonably calculated when using 25
and 325 reactions.

< |t appears that to obtain accurate results for
the minor species, more reacting
mechanisms are required.

CO Mass fraction

0.06

0.05

J.04

J.03

2.02

J.01

0

mechanisms.

CO

However NO is overpredicted even when using 325

x=0.03 m
25 reaction EDC
\b 25 reaction EDC small deltaT

\ - 325 reaction EDC
\ (D\ 325 reaction PaSR
\G) — 8 — experimental

N
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
radius (m)
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CO2 Mass fraction

NO Mass fraction

CO2
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C’/j Combustion products
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RANS GRI 325 RANS GRI 325 LES single step
NO contour CO2 contour CO2 contour
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C’/D Industry applications

AP DYNAMICS

engineering

< Significant number of nozzles on Industrial burners.
= For the above example there are 324.

< The complexity of the combustion model needs to be weighted against what is
feasible for large domains.
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= OpenFOAM is capable of providing reliable results for combustion simulations.

= The single step mechanism gave a substantially higher temperature and is
therefore not suitable.

= The GRI 325 mechanism is too computationally intensive.
= The Bilger's 25 mechanism appears to be a good compromise in complexity.

< Running OpenFOAM simulations with large timesteps overcomes the lack of a
steady state combustion solver.

Future steps

< Further works needs to be done on the LES.
< Mechanism with 5 reactions will be compared to Bilger's 25 mechanism.

< Equations to calculate NOX indirectly will be implemented.
= GRI mechanism is not required to obtain NOX.
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