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About AP Dynamics

Fully Integrated Engineering Service Company 

20+ years in business 

Locations

▪ Calgary, AB (Headquarters)

▪ Houston, TX (US operations)

Success Stories:

TC Energy, Shell, Suncor Energy, Cenovus, Chevron,

Kinder Morgan, ConocoPhillips, Air Liquide, Nutrien.

Team of 200+ highly skilled engineers and PhDs

▪ Many with 10+ years of experience
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Our Priority

Help Clients minimize facility and equipment downtime and 
optimize productivity and revenue by performing:

Fitness for Services (FFS) Assessments

Asset integrity studies

Field monitoring and troubleshooting

Optimizing equipment throughput and 
environmental performance

with reliable, innovative, value-effective solutions
using comprehensive, high tech on site testing and by 

simulating reality through state of the art computer modeling
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Introduction

Ennis et al. J Loss Prevent Proc. 2011

There is safety risk during Heat Exchanger operation 
when the flashing of the tube fluid occurs upon failure 

creating a significant pressure spike.

Flow pattern from rupture to PSV [1] 
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Introduction

API Std 521 recommends that a transient 
analysis should be performed to assess 

pressure surge and fluid dynamics between 
shell and PSV device when tube rupture occurs
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Model Objective

The phases following a tube rupture of high-pressure fluid into low pressure shell [1] 

The goal is to determine the 
magnitude of this peak pressure 

Ennis et al. J Loss Prevent Proc. 2011
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Application

Natural Gas Liquid 
(NGL)

Heat medium 

Natural Gas Liquid 
(NGL) 

Heat medium

Flow Stream Temperature [°C] Pressure [barG]

NGL – Tube Side 85.4 35
Heat Medium – Shell Side 176 10.7
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Peak Pressure Calculation Methods

• Method 1: Peak Pressure Calculations (EI Guideline)

• Method 2: Volume Model 

• Method 3: Extended Model 

• Method 4: Extended Model + Vaporization Effect 
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Peak Pressure Calculations (Method 1)

𝑷𝒊𝒔 𝑷𝒊𝒔 − 𝑷𝒓
𝜸 =

𝟐

𝜸+𝟏

𝜸/ 𝜸−𝟏
𝑷𝟎

𝑪𝑫𝒂 𝝆𝑳𝒄𝑨𝒕

𝑨𝒔

𝜸

Volume change (arising from the regression of the liquid/gas 
interface due to the passage of hydraulic wave) 

= 
Volume inflow gas at the rupture 

where

c is the wave speed in the liquid (m/s)
𝑃𝑟 is the operating pressure of the Low Pressure (LP) liquid (Pa)
𝑃𝑖𝑠 is the gas impact induced initial step in pressure (Pa)
𝜌𝐿 is liquid density (kg/m3)
𝛾 is the ratio of specific heats of the High Pressure (HP) gas
𝐶𝐷 is the coefficient of discharge for the tube
a is the velocity of sound for the discharging gas at the choke (m/s)
𝐴𝑡 is the twice the total cross-sectional area of the tube (m2)
𝐴𝑠 is the characteristic shell area (m2)
𝑃0 is the source pressure of High Pressure (HP) gas 



10

© AP Dynamics Inc. – 2022 – www.ap-dynamics.net
This document is the property of AP Dynamics Inc .
It can not be communicated to third parties or reproduced without written permission

Peak Pressure Calculations (Method 1)

• Path of Pressure Wave is required to determine the 
Characteristic Shell Area (𝑨𝒔) :

Actual distance the pressure wave travels from the tube rupture 
around each baffle
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Peak Pressure Calculations (Method 1)

Pressure Value, [bar]
P𝑖𝑠 (peak pressure) 34.28

𝑃𝑟 + 2ΔP𝑖𝑠 = 𝑃𝑟 + 2 × (𝑃𝑖𝑠 − 𝑃𝑟)
(shell design pressure)

56.85
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Volume Model (Method 2)

d𝑃

d𝑡
=

ሶ𝑚𝑡𝑣
𝜌𝑡𝑣

+
ሶ𝑚𝑡𝑙
𝜌𝑡𝑙

−
ሶ𝑚𝑝𝑠𝑣

𝜌𝑠𝑙
𝑉𝑡𝑣

𝑐2𝑡𝑣0 𝜌𝑡𝑣
+

𝑉𝑡𝑙
𝐵𝑡𝑙

+
𝑉𝑠𝑙
𝐵𝑠𝑙

+
𝑉𝑠ℎ𝑒𝑙𝑙
𝐵𝑠ℎ𝑒𝑙𝑙

where:

ሶ𝑚𝑡𝑣 and 𝜌𝑡𝑣 are the tube-side vapor mass flow rate [kg/s] and density [kg/m3]
ሶ𝑚𝑡𝑙 and 𝜌𝑡𝑙 are the tube-side vapor liquid flow rate [kg/s] and density [kg/m3]
ሶ𝑚𝑝𝑠𝑣 and 𝜌𝑠𝑙 are the PSV mass flow rate [kg/s] and shell-side liquid density [kg/m3]

𝑉𝑡𝑣 and 𝑐2𝑡𝑣0 are the volume of tube-side vapor that has entered the shell-side [m3] and tube-side vapor’s speed of sound [m/s]
𝑉𝑡𝑙 and 𝐵𝑡𝑙 are the volume of tube-side liquid that has entered the shell-side [m3] and tube-side liquid’s bulk modulus [Pa]
𝑉𝑠𝑙 and 𝐵𝑠𝑙 are the volume of shell-side liquid [m3] remaining in the shell-side and tube-side liquid’s bulk modulus [Pa]
𝑉𝑠ℎ𝑒𝑙𝑙 and 𝐵𝑠ℎ𝑒𝑙𝑙 are the volume [m3] and bulk modulus [Pa] of the shell material of construction (e.g., carbon steel)

𝐴𝑝𝑠𝑣𝐶0 is assumed to be 0.71 cm2 (“D” PSV orifice size)

fluid shell 
geometry
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Volume Model (Method 2) - Validation

Harhara and Hasan BMC Chemical Engineering (2020) 2:5



14

© AP Dynamics Inc. – 2022 – www.ap-dynamics.net
This document is the property of AP Dynamics Inc .
It can not be communicated to third parties or reproduced without written permission

Volume Model (Method 2)

34.71 bar

Shell Only
“D” PSV orifice size
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Extended Model (Method 3)

𝑄𝐸𝑉 = ቐ
ሶ𝑚𝑠𝑙

𝜌𝑠𝑙
, 𝑡 < 6

0, 𝑡 ≥ 6

L = 50 m
ID = 152 mm

L = 50 m
ID = 152 mm

𝜕𝑉

𝜕𝑡
+ 𝑉

𝜕𝑉

𝜕𝑥
+ 𝑔

𝜕𝐻

𝜕𝑥
+

𝑓𝑉 𝑉

2𝐷
= 0

𝜕𝐻

𝜕𝑡
+ 𝑉

𝜕𝐻

𝜕𝑥
+

𝑎2

𝑔

𝜕𝑉

𝜕𝑥
= 0

Governing equations 
for U/S and D/S piping:
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Extended Model (Method 3)

where:

ሶ𝑚𝑠−𝑖𝑛 is the shell inlet mass flow rate [kg/s] 
ሶ𝑚𝑠−𝑜𝑢𝑡is the shell outlet mass flow rate [kg/s]

𝐴𝑝𝑠𝑣𝐶0 is assumed to be 0.71 cm2 (“D” PSV orifice size)

d𝑃

d𝑡
=

ሶ𝑚𝑡𝑣
𝜌𝑡𝑣

+
ሶ𝑚𝑡𝑙
𝜌𝑡𝑙

−
ሶ𝑚𝑝𝑠𝑣

𝜌𝑠𝑙
+

ሶ𝑚𝑠−𝑖𝑛
𝜌𝑠𝑙

−
ሶ𝑚𝑠−𝑜𝑢𝑡
𝜌𝑠𝑙

𝑉𝑡𝑣
𝑐2𝑡𝑣0 𝜌𝑡𝑣

+
𝑉𝑡𝑙
𝐵𝑡𝑙

+
𝑉𝑠𝑙
𝐵𝑠𝑙

+
𝑉𝑠ℎ𝑒𝑙𝑙
𝐵𝑠ℎ𝑒𝑙𝑙
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Extended Model (Method 3)

35.25 bar

Shell + Piping
“D” PSV orifice size
EV Closes Suddenly
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Method 4 (Method 3 + Vaporization Effect) 

(1) two-phase 
SLT point

(2) Superheat

critical point

d𝑃

d𝑡
=

ሶ𝑚𝑡𝑣 + ሶ𝑚𝑡𝑙
𝜌𝑡𝑣

−
ሶ𝑚𝑝𝑠𝑣

𝜌𝑠𝑙
+

ሶ𝑚𝑠−𝑖𝑛
𝜌𝑠𝑙

−
ሶ𝑚𝑠−𝑜𝑢𝑡
𝜌𝑠𝑙

𝑉𝑡𝑣
𝑐2𝑡𝑣0 𝜌𝑡𝑣

+
𝑉𝑡𝑙
𝐵𝑡𝑙

+
𝑉𝑠𝑙
𝐵𝑠𝑙

+
𝑉𝑠ℎ𝑒𝑙𝑙
𝐵𝑠ℎ𝑒𝑙𝑙
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36.98 bar

Method 4 (Method 3 + Vaporization Effect) 

Shell + Piping
“D” PSV orifice size
EV Closes Suddenly
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25.95 bar

Method 4 (Method 3 + Vaporization Effect) 

Shell + Piping
“M” PSV orifice size
EV Closes Suddenly
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37.47 bar

Method 4 (Method 3 + Vaporization Effect) 

Shell + Piping
No PSV
EV Closes Suddenly
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𝑄𝐸𝑉 = ൞

ሶ𝑚𝑠𝑙

𝜌𝑠𝑙
× 1 −

𝑡

6 𝑠
, 𝑡 ≤ 6

0, 𝑡 > 6

21.84 bar

Method 4 (Method 3 + Vaporization Effect) 

Shell + Piping
“M” PSV orifice size
EV Closes gradually
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Summary of Results

Method
Shell Overpressure 

(bar)

P𝑖𝑠 (EI Guideline) 34.28

Volume Model 34.71

Extended Model 35.25

Extended Model + Vaporization Effect 36.98
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Summary of Results

Method
Shell Overpressure 

(bar)
Extended Model + Vaporization Effect 

(“M” PSV Orifice Size) 
25.95

Extended Model + Vaporization Effect 
(No PSV)

37.47

Extended Model + Vaporization Effect 
(Closure Linear Function of EV + “M” PSV 

Orifice Size)
21.84

The shell overpressure calculated with the Method 4 are as 
follows: 
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Conclusions and Recommendations

• Overpressure Dynamic/Transient analysis should be 
performed to identify an accurate overpressure 

• Overpressure greatly depends on PSV orifice size

• Upstream and Downstream piping and associated devices 
should be considered in the transient model

• Vaporization effect should be addressed in cases that two-
phase condition cannot be maintained and superheat 
conditions are reached
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